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Abstract
A new class of solutions is proposed for discrete and ultradiscrete modified
KdV equations. These are directly related to solutions of the box and ball
system with a carrier. Moreover, an extended box and ball system and its exact
solutions are discussed.

PACS numbers: 02.30.Ik, 05.45.Yv, 87.17.−d

1. Introduction

The modified Korteweg–de Vries (mKdV) equation,

∂w

∂t
− w2 ∂w

∂x
+

∂3w

∂x3
= 0 (1)

is one of the famous soliton equations. A discrete analogue of this equation was first proposed
by Hirota as the Bäcklund transformation for the discrete KdV equation [1]. He also showed
that the discrete mKdV equation is a reduced case of the Hirota–Miwa equation [2]. An
extended version of the discrete mKdV equation, which has an extra parameter, was introduced
by Tsujimoto and Hirota in order to discuss the existence of higher order conserved quantities
[3]. As for exact solutions, Maruno et al presented an N-soliton solution and algebraic
solutions for the discrete mKdV equation using its bilinear form [4].

Ultradiscrete equations are evolution systems in which both dependent and independent
variables take discrete values [5, 6]. From both theoretical and applied points of view, it is an
interesting problem to construct ultradiscrete systems from discrete equations. In [7], we have
given an ultradiscrete analogue of the sine-Gordon equation and discussed its soliton solutions.
For the mKdV equation, Takahashi and Matsukidaira [8] have shown that an ultradiscrete
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system corresponding to the extended version of the discrete mKdV equation reduces to
‘box and ball system with a carrier (BBSC)’. Although they give some exact solutions of
the BBSC, the relation between them and solutions of the discrete mKdV equation is not
yet clear.

In this letter, we give a class of solutions for the extended version of the discrete mKdV
equation and show that they directly relate to those of the BBSC. We also propose an extended
BBSC in which capacities of the boxes and the carrier take negative values. In section 2, we
first present a class of solutions of the extended mKdV equation. Then we introduce a new
dependent variable which is suitable for discussing the relation to the BBSC. In section 3,
we ultradiscretize the extended mKdV equation and its solutions. Then in section 4, we derive
an ultradiscrete system for the new variable and show that the system and its solutions are
directly related to those of the BBSC. We also discuss an extension of the BBSC in this section.
Finally in section 5 we give concluding remarks.

2. Solutions of the discrete mKdV equation

The extended version of the discrete mKdV equation [3] may be written as

wm+1
n

1 + a−1dwm
n+1

1 + a−1d−1wm
n+1

= wm−1
n

1 + a−1dwm
n−1

1 + a−1d−1wm
n−1

, (2)

where a and d are parameters related to the mesh sizes for m and n. If we replace wm
n , a, d

and m with 1 + (wn − 1)/[α(wn + 1)], (1 − α)/(1 + α), (1 + δ)/(1 − δ) and s/δ, respectively
and take the limit δ → 0, we have from (2)

∂wn

∂s
+

(1 − α2)[1 − α2(wn − 1)2](wn+1 − wn−1)

2[1 + α2(wn+1 − 1)][1 + α2(wn−1 − 1)]
= 0. (3)

If we further replace s by 6t/[α3(1 − α2)] and n by x/α + 6(1 + α2)t/α3 and take the limit
α → 0, then (3) reduces to (1).

By introducing a variable transformation

wm
n = f m

n+1g
m
n−1

f m
n−1g

m
n+1

(4)

in (2) and decoupling the resulting equation, we have the bilinear form

(1 + a−1d−1)f m+1
n gm−1

n = f m
n−1g

m
n+1 + a−1d−1f m

n+1g
m
n−1

(1 + a−1d)f m−1
n gm+1

n = f m
n−1g

m
n+1 + a−1df m

n+1g
m
n−1.

(5)

If we take a = 1, then (5) becomes the bilinear form of the discrete mKdV equation proposed
by Hirota [1, 2].

The N-soliton solution of (2) is obtained from f m
n and gm

n , in terms of polynomials of
exponential functions. Since the N-soliton solution given by Maruno et al [4] has negative
signs in the polynomials, difficulties arise when we apply the procedure of ultradiscretization.
We here give another class of N-soliton solution which is suitable for the ultradiscretization.
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Let pj , ωj , cj (j = 1, 2, . . . , N) be parameters satisfying

exp(2pj ) = [exp(2cj )(1 + ad−1) + 1 + a−1d−1]

× [exp(2cj )(1 + ad) + 1 + a−1d]

× [exp(2cj )(1 + a−1d−1) + 1 + ad−1]−1

× [exp(2cj )(1 + a−1d) + 1 + ad]−1

exp(2ωj) = [exp(2cj )(1 + ad−1) + 1 + a−1d−1]

× [exp(2cj )(1 + a−1d) + 1 + ad]

× [exp(2cj )(1 + a−1d−1) + 1 + ad−1]−1

× [exp(2cj )(1 + ad) + 1 + a−1d]−1.

(6)

If we eliminate cj , we have the dispersion relation

(1 + ad)(1 + a−1d) sinh ωj − (1 + d)(1 − d) sinh pj = 0. (7)

Moreover, we define phase functions ηj and an interaction factor exp(Ajk) by

ηj = pjn + ωjm + η
(0)
j (8)

exp(Ajk) = sinh2(cj − ck)

sinh2(cj + ck)
, (9)

where η
(0)
j is an arbitrary phase constant. Then the N-soliton solution we propose is written as

f m
n =

∑
µ

exp


 N∑

j=1

µj(ηj + cj ) +
N∑

j<k

µjµkAjk




gm
n =

∑
µ

exp


 N∑

j=1

µj(ηj − cj ) +
N∑

j<k

µjµkAjk


 ,

(10)

where µ = (µ1, µ2, . . . , µN), µj ∈ {0, 1}. In particular, the one-soliton solution is given by

f m
n = 1 + exp(η1 + c1) gm

n = 1 + exp(η1 − c1) (11)

and the two-soliton solution by

f m
n = 1 + exp(η1 + c1) + exp(η2 + c2) + exp(η1 + η2 + c1 + c2 + A12)

gm
n = 1 + exp(η1 − c1) + exp(η2 − c2) + exp(η1 + η2 − c1 − c2 + A12).

(12)

For the variable wn the one-soliton solution is written as

wm
n = cosh η1 + cosh(p1 + c1)

cosh η1 + cosh(p1 − c1)
. (13)

It is to be noted that wm
n → 1 as |n| → ∞ and that the amplitude

cosh2(p1 + c1)/2

cosh2(p1 − c1)/2
− 1 (14)

depends on the values of a and d.
Let us introduce a new dependent variable um

n by

um
n = f m

n gm−1
n−1

f m−1
n−1 gm

n

. (15)
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Then from (5), we find that um
n satisfies

um+1
n = 1 + a−1d

1 + a−1d−1

1 + a−1d−1 ∏0
i=−∞

(
um+i

n+1+i

/
um+i

n−1+i

)
a−1dum

n+1 +
∏0

i=−∞
(
um+i

n−1+i

/
um−1+i

n+i

) . (16)

We shall see in section 4 that the ultradiscrete limit of (16) gives the BBSC discussed by
Takahashi and Matsukidaira [8]. The one-soliton solution for um

n is written as

um
n = cosh

(
η1 − p1+ω1

2

)
+ cosh

(−c1 − p1+ω1

2

)
cosh

(
η1 − p1+ω1

2

)
+ cosh

(
c1 − p1+ω1

2

) . (17)

The behaviour of um
n is almost the same as wm

n .

3. Ultradiscrete mKdV equation

We now apply the procedure of ultradiscretization to (2) and (5). Replacing a, d,wm
n , f m

n and
gm

n with

a = exp

(
A

ε

)
, d = exp

(
D

ε

)
, wm

n = exp

(
Wm

n

ε

)

f m
n = exp

(
Fm

n

ε

)
, gm

n = exp

(
Gm

n

ε

)
,

(18)

respectively, and taking the limit of ε → +0, we have an ultradiscrete system for Wm
n ,

Wm+1
n + max

(
0,Wm

n+1 − A + D
) − max

(
0,Wm

n+1 − A − D
)

= Wm−1
n + max

(
0,Wm

n−1 − A + D
) − max

(
0,Wm

n−1 − A − D
)
, (19)

and one for Fm
n and Gm

n ,

Fm+1
n + Gm−1

n = max
[
Fm

n−1 + Gm
n+1 − max(0,−A − D), Fm

n+1 + Gm
n−1 − max(0, A + D)

]
Fm−1

n + Gm+1
n = max

[
Fm

n−1 + Gm
n+1 − max(0,−A + D), Fm

n+1 + Gm
n−1 − max(0, A − D)

]
.

(20)

The dependent variable Wm
n is written in terms of Fm

n ,Gm
n by

Wm
n = Fm

n+1 + Gm
n−1 − Fm

n−1 − Gm
n+1. (21)

Equation (19) admits exact solutions which are obtained from the ultradiscrete analogue
of the N-soliton solution (10) through (21). In order to set the analogue, we first replace the
parameters in (10) by pj = Pj/ε, ωj = �j/ε, cj = Cj/ε and η

(0)
j = �

(0)
j

/
ε. Then by taking

the limit of ε → +0, we find that (6) and (7) reduce to

2Pj = max[2Cj + max(0, A − D), max(0,−A − D)]

+ max[2Cj + max(0, A + D), max(0,−A + D)]

− max[2Cj + max(0,−A − D), max(0, A − D)]

− max[2Cj + max(0,−A + D), max(0, A + D)]

2�j = max[2Cj + max(0, A − D), max(0,−A − D)]

+ max[2Cj + max(0,−A + D), max(0, A + D)]

− max[2Cj + max(0,−A − D), max(0, A − D)]

− max[2Cj + max(0, A + D), max(0,−A + D)]

(22)
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Figure 1. Examples of triangular pulses. The left is for the case C1 = 2, A = 2, D = 1 and the
right for the case C1 = 2, A = −2,D = 1.

and

max[|Pj + D|, max(|A|, |D|) + �j ] = max[|Pj − D|, max(|A|, |D|) − �j ], (23)

respectively. Similarly, the ultradiscrete limit of the function ηj and the interaction factor
exp(Ajk) are given by

�j = Pjn + �jm + �
(0)
j (24)

and

2(|Cj − Ck| − |Cj + Ck|), (25)

respectively.
Employing these variables, the ultradiscrete analogue of the one-soliton solution (11) is

written as

Fm
n = max(0, �1 + C1), Gm

n = max(0, �1 − C1) (26)

and

Wm
n = max(|�1|, |P1 + C1|) − max(|�1|, |P1 − C1|). (27)

This solution describes a triangular pulse, the sign of which depends on the parameters A and
D (see Figure 1).

The ultradiscrete analogue of the two-soliton solution is given by

Fm
n = max[0, �1 + C1, �2 + C2, �1 + �2 + C1 + C2 + 2(|C1 − C2| − |C1 + C2|)]

Gm
n = max[0, �1 − C1, �2 − C2, �1 + �2 − C1 − C2 + 2(|C1 − C2| − |C1 + C2|)].

(28)

Figure 2 shows the behaviour of Wm
n obtained from (28). The interaction of two triangular

pulses is similar to that described by the two-soliton solution for the mKdV equation.
It is to be noted that the ultradiscrete analogue of the N-soliton solution is obtained by

applying the same procedure to (10).

4. Relation to the box and ball system with a carrier

In order to obtain an ultradiscrete system corresponding to the BBSC, we first replace a, d

and um
n in (16) with

a = exp

(
A

ε

)
, d = exp

(
D

ε

)
, um

n = exp

(
Um

n

ε

)
, (29)
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Figure 2. An example of interaction of two pulses in the ultradiscrete system. The parameters are
A = 10, D = 6, (C1, �

(0)
1 ) = (6, 0) and (C2, �

(0)
2 ) = (10, 0).

respectively. Then taking the limit of ε → +0, we have an ultradiscrete system for Um
n ,

Um+1
n = min


max(0, A − D) − Um

n+1,

0∑
j=−∞

U
m−1+j

n+j −
0∑

j=−∞
U

m+j

n−1+j + max(0,−A + D)




+ max


−max(0,−A − D),

0∑
j=−∞

U
m+j

n+1+j −
0∑

j=−∞
U

m+j

n−1+j − max(0, A + D)


 . (30)

The dependent variable Um
n is written in terms of Fm

n ,Gm
n by

Um
n = Fm

n + Gm−1
n−1 − Fm−1

n−1 − Gm
n . (31)

Replacing the parameters and the coordinates in the ultradiscrete system for Um
n (30) by

L = A − D, M = A + D, j = n + m

2
, t = m − n

2
, (32)

we have

Ut+1
j = min

[
max(0, L) − Ut

j ,

j−1∑
i=−∞

Ut
i −

j−1∑
i=−∞

Ut+1
i + max(0,−L)

]

+ max

[
−max(0,−M),

j∑
i=−∞

Ut
i −

j−1∑
i=−∞

Ut+1
i − max(0,M)

]
, (33)

which is nothing but the BBSC in the case of 0 < L < M [8]. In the BBSC, L and M
correspond to the capacities of the boxes and carrier, respectively.

In the preceding section, we have discussed the ultradiscrete limit of Fm
n and Gm

n

corresponding to the N-soliton solution of the discrete mKdV equation. Employing this result,
we can construct exact solutions for (33) by means of (31). In the case of 0 < L < M , they
are equivalent to those presented in [8], which shows a direct relationship between solutions
of the mKdV equation and those of the BBSC. This relationship was never made explicit until
now.

However, the parameters A and D are arbitrary in our treatment. Hence the capacities L
and M defined in (32) are also arbitrary, which means we can extend the BBSC to a system
with negative ‘capacities’ of boxes and/or a carrier.



Letter to the Editor L33

t = 0 0−1−4−4−4−4−2 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 −2−4−4−4−4−1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 −3−4−4−4−4 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 −4−4−4−4−3 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 −1−4−4−4−4−2 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 −2−4−4−4−4−1

6 0 0 0 0 0 0 0 0 0 0 0 0 −3−4−4−4−4

−→ j

0

00

Figure 3. A pulse with negative amplitude: (C1, L, M) = (19/2, −7,−4).

t = 0 0 1 4 4 4 4 2 0 0 0 0 0 0 0 0 0 0 0

1 0 1 4 4 4 4 2 0 0 0 0 0 0 0 0 0 0 0

2 0 1 4 4 4 4 2 0 0 0 0 0 0 0 0 0 0 0

3 0 1 4 4 4 4 2 0 0 0 0 0 0 0 0 0 0 0

4 0 1 4 4 4 4 2 0 0 0 0 0 0 0 0 0 0 0

5 0 1 4 4 4 4 2 0 0 0 0 0 0 0 0 0 0 0

6 0 1 4 4 4 4 2 0 0 0 0 0 0 0 0 0 0 0

−→ j

Figure 4. A standing wave solution: (C1, L,M) = (19/2, 7,−3).

Solutions of such a system immediately follow from the results we have given so far.
We here present two examples of solutions corresponding to the one-soliton solution (26).
Figure 3 shows an example for L < M < 0. A pulse with negative amplitude propagates
to the right. If we change the sign of the values in all boxes, we recover the corresponding
solution for 0 < L < M . Figure 4 is an example for M < 0 < L. In this case we have a
standing wave solution, which is not obtained in the original BBSC.

5. Concluding remarks

We have given a new class of soliton solutions for the discrete mKdV equation and we
ultradiscretized both the equation and the solutions. Moreover, by introducing a new dependent
variable, we have shown that the ultradiscrete system also directly relates to the BBSC and we
presented an extended BBSC in which the capacities of boxes and carrier can have negative
values.

The new class of soliton solutions considered in this letter has the peculiar property that the
sign of the solutions is completely determined by the parameters included in the equation. The
continuous mKdV equation admits exact solutions describing soliton–anti-soliton interactions,
which are not covered by our solutions. As mentioned in section 2, we have difficulty applying
the procedure of ultradiscretization to solutions with non-definite sign. Hence, in order to
treat such solutions we have to introduce a different method of ultradiscretization, on which
we shall report in a forthcoming paper.
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